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The chi-squared statistic in ethology: use and misuse
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Abstract. Pearson’s chi-squared and related tests are not appropriate for all frequency-type data. Lack of
independence between observations can invalidate traditional contingency table analysis because sam-
pling distributions are no longer Poisson, multinomial or product multinominal. The usual consequence
is that a true null hypothesis is rejected too often, making dubious a claim of significance. If possible,
counts should be verified as coming from a Poisson or multinomial distribution before conducting tests.
Assuming independence is not sufficient; chi-squared and related tests are shown not to be robust to the
violation of this assumption. Frequency-type ethological data, such as the number of encounters between
individuals or performances of a behaviour, are likely to violate the assumption of independence. A
superior approach for the analysis of these data is demonstrated using parametric and non-parametric

analysis of variance (ANOVA).

After collecting frequency-type data, many re-
searchers turn to the well-known Pearson’s chi-
squared statistic for tests of significance. Here we
discuss a common problem that arises from the
improper use of chi-squared and related tests (e.g.

the likelihood ratio G? test or Fisher’s exact test) of"

frequency-type data. We illustrate these problems
with simulated ethological data. The problem stems
from an inadequate understanding of when a chi-
squared or related test is appropriate. Statistical
texts directed at biologists, for example, Sokal &
Rohlf (1981), compound this problem by giving in-
sufficient or enigmatic treatment of the assumptions
underlying chi-squared tests. Many researchers
believe chi-squared and related tests to be ‘distri-
bution free’ or ‘non-parametric’. This is likely due
to their relegation to the non-parametric statistics
section in many textbooks or discussions of them
in books on non-parametric statistics. As will be
explained below, these tests are not ‘distribution
free’.

The greatest problem arises from lack of inde-
pendence between observations. This problemalso
exists in the psychological literature, noted long
ago by Lewis & Burke (1949). Lack of indepen-
dence among observations can lead to an inflated
chi-squared statistic (statistical significance is more
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likely to be declared incorrectly) or deflated chi-
squared statistic (the test is too conservative).

Pearson’s chi-squared and related tests are tra-
ditionally used (1) to test for the goodness-of-fit of
an empirical distribution to a theoretical distri-
bution, and (2) to test for independence of two
or more variables. In a goodness-of-fit test, one
expects a certain number of observations to fall into
each of the classes based on theory, for example,
Mendelian genetic ratios. If the observed and
expected frequencies are similar to each other in
each of the classes, then the fit is good. The obser-
vations may be discrete, for example, counts of in-
dividuals, or continuous, for example, the duration
of a bird song. Since chi-squared and related tests
are based on the number of observations in a class,
information is lost if the observations are continu-
ous. In tests of independence, the observations are
cross-classified using two or more classifying vari-
ables. One wants to assess whether the variables
used for cross-classifying are independent of each
other. The problem of dependence between obser-
vations affects both tests of independence and
goodness-of-fit in the same way.

SAMPLING DISTRIBUTIONS

Traditional contingency tables are generally tested
for independence among the classifying variables
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using a chi-squared or G? statistic. These tests are
valid only under certain sampling distributions.
The three most commonly encountered distri-
butions are (1) independent Poisson sampling, 2)

simple multinomial sampling, and (3) product

multinomial sampling.

In (1) independent Poisson sampling, each cell
count is a sample from a Poisson distribution. The
mean and variance of this distribution are equal
to each other, an important feature that will be
discussed in greater detail below. There is no res-

triction on total sample size in independent Poisson

sampling. An example of data that might be col-
lected under this sampling scheme is the following.
A researcher counts male frogs along the lake shore
until a certain portion of the lake shore has been
examined. Each frog is classified by two criteria,
whether it is vocalizing and whether it is in the
water. One must first verify that the presence or
absence of vocalization or location of one frogdoes
not influence these qualities in its neighbours, since
this would violate the assumption of independent
observations.

In (2) simple multinomial sampling, each cell
count is assumed to come from a multinomial dis-
tribution. A restriction has been placed on the data
since the sample size is predetermined. One may
think of this distribution as independent Poisson
sampling ‘occurring in each cell with a restriction
on the contingency table. With this restriction, the
cell frequencies of a contingency table built from
samples from a multinomial distribution must add
up to N, the previously determined sample size.
An example of simple multinomial sampling is the
following. The ethologist researching frogs above
decides to stop after categorizing 100 frogs.

In (3) product multinomial sampling, an ad-
ditional restriction is placed on one or more of
the marginal totals. For example, if sex were one
factor, a researcher might collect data on 50
individuals of each sex. In these three sampling
distributions the likelihood functions yielding the
expected cell frequencies are usually identical. Thus,
for practical purposes, statistical testing is equiv-
alent (Bishopetal. 1975). In general, sampling from
one of the above distributions has occurred when
the count of each cell in a contingency table rep-
resents the number of independent events, obser-
vations or individuals possessing the combination
of characteristics identifying that cell (e.g. vocaliz-
ing male frogs out of water). One may then proceed
with a traditional contingency table analysis.
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Much of the published theoretical work impli-
citly assumes that sampling has occurred from one
of the above distributions. Thus, it may not be sur-
prising that this assumption is rarely emphasized in
textbooks. This may have lulled some researchers
into believing that hypotheses concerning associ-
ation for any discrete'data arrayed in a contingency
table are appropriately tested using a chi-squared
or related statistic.

VIOLATING INDEPENDENCE

The term ‘independence’ may be confusing.
Independence can refer to independence among
variables (often the stated null hypothesis in con-
tingency table analysis) or to independence among
the observations that fill contingency tables. One
may have independent observations but depen-
dence among variables, or dependence among
observations but independence among variables. In
traditional contingency table analysis, the obser-
vations that are summed to yield the cell frequen-
cies must be independent of each other regardless
of which of the three sampling distributions dis-
cussed above is used. If the observations are not
independent, they cannot come from one of the
three distributions listed above and traditional
contingency table analysis is incorrect. A violation
of this assumption results in altered chi-squared
values. We emphasize the relationship between in-
dependence of observations and the Poisson distri-
bution. If the observations are independent of each
other in time or space, each cell contains a sample
from a Poisson distribution. If a cell does not
contain a sample from a Poisson distribution,
observations are not independent and traditional
contingency table analysis can not be used. Thus,
chi-squared and related tests are not ‘distribution
free’, since cells must contain samples from a
Poisson distribution.

Chi-squared Test

To help understand the relationship between the
Poissondistributionand the chi-squared test, it may
be useful to review the philosophy behind the chi-
squared test. Rigorous mathematical explanations
of chi-squared and related tests are available else-
where in highly readable form (e.g. Cochran 1952;
Bishop et al. 1975; Moore 1986). The chi-squared
test is based on the y? distribution. The x?
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distribution is the sum of squared standardized

normal variables. Each normal variable is standar-

dized (denoted by z) by subtracting its mean and
then dividing by its standard deviation,

X—p

zZ= 2

(o2

A y? distribution with 1 degree of freedom is the
distribution of one squared standardized normal
variable, i.e.

(X—p)?

02

A x? distribution with two degrees of freedom is
the distribution of the sum of two independent
ones, i.e.

? (X/i_l»li)z
I

i=1 G;

and so forth. Note the similarity to the chi-squared
test statistic,

(observed —expected)?

expected

if we say the expected frequency in the numerator
is the mean, p,, and the expected frequency in the
denominator is the variance, ;2. In the Poisson
distribution the mean and variance are equal. Since
the observed frequency in each cell is assumed to
be a sample from a Poisson distribution, the mean
(=variance)isestimated by the expected frequency.
As the expected frequency increases, Poisson vari-
ables behave more and more like normal variables.
Thus, we should expect to get roughly a x? distri-
bution with £ degrees of freedom by summing k
independent Poisson variables, after transforming
each of them using the chi-squared test statistic
algorithm; subtracting the mean and squaring the
result, then dividing by the mean (= variance). As
in other statistical tests, degrees of freedom are lost
when parameters (here, cell means) are estimated
from the data.

Dependence Between Behaviour Patterns

Behaviour patterns are rarely, if ever, performed
independently of each other (imagine the efficiency
of an animal whose behaviour patterns occur at
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random in time rather than in response to inter-
nal and external conditions). Many patterns of
behaviour that interest ethologists tend to occur
in clusters. This has important statistical conse-
quences: (1) individual behaviour patterns are not
independent, and (2) the variance of the probability
distribution of the behaviour is inflated (Gleser &
Moore 1983).

Suppose a behaviour tends to be performed in
clusters. Furthermore, suppose that the mean fre-
quency of this behaviour does not change from one
time period to another. In each time period, the
clustering would cause the data to be overdispersed
relative to a Poisson distribution, i.e. the variance
would be larger than the mean. Since the variance is
larger, the frequencies between time periods would
tend to differ more than they would if they were
independent Poisson samples. When constructing
the chi-squared statistic, this would not be taken
into account. The consequence is an inflated chi-
squared statistic. The same problem arises in tests
of independence for the same reason. Below we give
results, using simulated data from a variety of dis-
crete distributions, of such analyses. In all cases, if
the variance of the distribution is larger than its
mean, the null hypothesis is rejected too frequently.
Some behaviour patterns, for example, breathing,
are performed regularly, i.e. the variance is less than
the mean. In this case null hypotheses would be
rejected too infrequently.

Frequencies of behaviour may not be indepen-
dent because an individual contributes more than
once to the data set. Machlis et al. (1985) discussed
the problem of dependence resulting from repeated
measurements onindividuals. In contingency tables
this could arise if one is interested in the number of
interactions of each dyad in a social group. Since
each individual is part of several dyads, it contrib-
utes to several cell frequencies. This affects the
covariance among the cells. If one individual was
particularly active socially, all cell frequencies to
which this individual contributed would tend to be
large. This problem of dependence can be dealt
with statistically since the source of dependency is
known and may be estimated (see below). A more
serious problem is that the interaction rate of any
dyad is unlikely to follow a Poisson distribution. If
it did follow a Poisson distribution, then inter-
actions between individuals occur randomly in
time. Problems resulting from analyses where
there is dependence between observations is best
illustrated by example.
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Table I. Five sample data sets arranged as two-by-two matrices

Number of days
1 3 9 27 81
Subject am. p.m. am. p.m. am. p.m. am. p.m. am. p.m.
1 8 11 82 38 179 156 550 558 1557 1739
2 37 20 61 74 156 196 553 609 1622 1507

Cell frequencies for 1 day were generated under the null hypothesis of independence by
sampling from a discrete normal distribution of mean 19:6 and variance 95-6. Cell
frequencies for the other matrices were obtained by generating cell frequencies, as
described above, for 3,9, 27 and 81 days and summing the matrices over days.

Test-of-independence Example

An ethologist wants to know whether there is
independence between an individual’s behaviour
(subject) and time of day based on the frequency of
a particular behaviour. In this example there are
two subjects and two times of day (morning and
evening). The null hypothesis is that an individual’s
behaviour and time of day are independent. If one
subject performs the behaviour more often in the
morning and the other more often in the evening,
individual behaviour and time of day are not inde-
pendent. The scientist observes how frequently the
behaviour is performed by the two subjects for an
hour, once in the morning and once again in the
evening. Since the behaviour is not common, obser-
vations are made over several days. At the end of
this time, the morning and evening frequencies are
summed separately for each subject. The ethologist
then constructs a two-by-two contingency table
with subjects as rows and time of day as columns.

Suppose that the four cell frequencies are
samples from the same distribution, i.e. the null
hypothesis is true, individual behaviour and time of
day are independent. Furthermore, suppose that in
this distribution there are dependencies between
the observations, i.e. this behaviour tends to be per-
formed in clusters. The result is that the variance,
o2, is greater than the mean, p. This could arise
through auto-correlation or a variety of other
reasons, all yielding different probability distri-
butions. We will model this distribution using a
discrete normal distribution, where it may be easier
to see effects caused by changes in variance. A dis-
crete normal distribution is a distribution based on
the continuous normal distribution where the vari-
able, here behaviour frequencies, can only assume

Table I1. The proportion of null hypotheses rejected out of
1000 simulated sample data sets for various P-values

Proportion of rejected null hypotheses

Number of days
P 1 3 9 27 81
0-5 0793 0769 0-789 0-758  0-753
0-1 0-537 0463 0-505 0477 0-444
0-05 0-450 0365 0424 0-398 0-355
0-01 0-322 0238 0273 0260 0-225
0-001 0-213 0123 0155 0-144 0-133

Sample data sets were constructed identically to those in
Table I. The G? statistic was used to test for independence.

integer values and all probabilities of negative
numbers are summed with the probability of zero
behaviour patterns. For large samples, a Poisson
distribution with mean A and a discrete normal dis-
tribution with mean and variance equal to A will be
indistinguishable. Suppose that a 1-h sample of this
behaviour follows a discrete normal distribution
with mean 19-6 and variance 95-6. Contingency
tables of simulated data coming from this distri-
bution, summed over various numbers of days are
presented in Table I.

To investigate the effects of using a G? test of
independence on this type of data, we performed a
Monte Carlo simulation using.1000 data sets. Each
cell in a two-by-two contingency table was filled
from a sample from the same discrete normal distri-
bution of mean 19-6 and variance 95-6. As in the
example contingency tables in Table I, the cells
were summed over various numbers of days. Since
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Table III. The proportion of null hypotheses rejected out
of 10,000 simulated sample data sets for P-values of 0-05
and 0-01 from discrete normal distributions

Proportion of
rejected null hypotheses

Mean Variance P=005 P=0-01
19-5 9-1 0-0047 0-0003
19-5 20-1 0:0569 0-0132
19-5 48-8 0-2501 0-1358
19-6 95-6 0-4353 0-1809

Sample data sets were constructed under the null hypoth-
esis of independence from discrete normal distributions in
two-by-two contingency tables. The chi-squared statistic
was used to test for independence. Sample data sets
represent a single day.

the cell frequencies are samples from the same dis-
tribution, one would hope that the null hypothesis,
that individual behaviour (subject) and time of day
are independent, would be infrequently rejected.
The resulting contingency tables, analysed using the
G* test, are givenin Table IL. The G test rejected the
null hypothesis of independence between the two
factors more frequently than desired. For example,
for observations summed over 9 days, 42% of null
hypotheses were rejected at the 0-05 level. If the G*
test is valid, given a true null hypothesis one expects
5% of the simulated data sets to be rejected at the
0-05 level.

Because the sum of normal distributions is a
normal distribution, each cell frequency in the
contingency tables of summed frequencies can be
thought of as being generated from a normal distri-
bution. The excessive rejection rate does not arise
from combining observation periods, thus increas-
ing sample size will not help. The sum of Poisson
distributions is a Poisson distribution. If the true
distribution of behaviour was Poisson, then the dis-
tribution of the sums would also be Poisson. The
use of the G? statistic is invalid because the underly-
ing assumption that the cell frequencies are samples
from a Poisson distribution has been violated. We
performed additional simulations with various dis-
crete distributions using chi-squared and G2 tests.
All yielded similar results. If the mean and variance
were approximately equal, the tests worked well.
As the disparity between the mean and variance
grew the tests became increasingly inaccurate. We
give results using discrete normal distributions with
similar means but different variances in Table III.
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Goodness-of-fit Example

Suppose one wants to test whether behaviour
patterns are performed at the same rate through-
out the day, divided into 10 observation periods.
Suppose that the true distribution of behaviour
frequency of each observation period is identical
(i.e. the null hypothesis is true), and that this distri-
bution is a discrete uniform distribution (the prob-
ability of observing each frequency is equally likely)
ranging from 0 to 14. Furthermore, suppose that
observations were made for 32 days. Thus, each of
the 10 observed frequencies in the contingency
table consists of the sum of the frequencies of 32
observation periods made at the same time of day.
The central limit theorem tells us that the distri-
bution of this sum converges on a normal distri-
bution. The possible range of each cell is then 0 to
448 (=14 x 32). The expected frequency of each cell
in the contingency table would be the same, calcu-
lated by summing the observed frequencies of the
10 cells and then dividing by 10.

We created 1000 simulated data sets based on the
conditions described above. Using a chi-squared
statistic, the hypothesis of equal frequencies was
rejected 86% of the time at the 0-05 level. Since
the null hypothesis is true, the test must be
inappropriate. As in the test of independence, the
problem arises from an inappropriate sampling
distribution. The mean of this sample distribution
is 224 (=7 x 32), the variance 597 (=18-67 x 32).
The variance is greater than the mean, hence an
inflated chi-squared statistic and a rejection rate
considerably higher than 5%.

CONSEQUENCES

How serious are the types of errors discussed
above? Unfortunately, they are probably quite
serious for three reasons. First, if the data do not
adhere to a Poisson distribution but are clustered,
then variances are going to be greater, not smaller,
than the assumed Poisson distribution. As demon-
strated here, this will result in rejecting true null
hypotheses more often than -assumed with the
selected alpha level. In one goodness-of-fit simula-
tion using a discrete uniform distribution of 0-39
generated under the null hypothesis, 99% of the
tests rejected the null hypothesis at a=0-05. A
researcher committing this error is virtually assured
of rejecting a true null hypothesis. Second, increas-
ing sample size will not aid the researcher. If the
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sampling distribution of the cell entries is not
Poisson, the chi-squared statistic will give similar
erroneous results regardless of sample size. How-
ever, a large data set will permit one to subset the
data. This may be used to help identify the shape of
the original distribution. Third, intricate statistical
analyses of social systems may depend heavily on
the assumption of independence of behaviour (e.g.
Altmann & Altmann 1977). Results using formulae
developed under the assumption of independence
may be misleading if behaviour is not independent.
Thismay resultin a situation where the researcheris
unaware of or may not understand the assumptions
of the statistical test. ’

We chose to use frequencies of behaviour per-’

formed by individuals to illustrate problems that
can arise by using chi-squared tests. Some examples
in the literature of the use of chi-squared or G2 tests
in this fashion are Emlen et al. (1975, page 158),
Rissing & Pollock (1986, their Table I), and Keane
(1990, page 270). However, this is by no means the
only situation in which one must consider the
underlying sampling distribution. Many studies,
for example, Watt (1986) and Robinson (1986), use
the number of encounters as the total sample size
for the contingency table. The total number of
encounters is then partitioned to create the cells.
Under the assumption of independent Poisson
sampling, all cell frequencies and the total number
of encounters must be samples from Poisson distri-
bution. At the very least, one should verify that
overall encounter rate follows a Poisson distri-
bution. Our purpose is not to give a list of every
conceivable way frequency counts can violate the
assumptions of statistical tests used to analyse
contingency tables. If it is hard to imagine that the
events being counted in each cell occur at random
or that each individual in the study is completely
independent of all other individuals, one should
suspect that the sampling distribution is not
Poisson. The burden of proof that the correct stat-
istical procedures have been performed rests with
the researcher. Unless raw data are reported in full,
insufficient information is available for the reader
to evaluate the correctness of a statistical analysis.
This is especially true in contingency table analysis
where only total cell frequencies are reported. We
hope to stimulate researchers to consider the under-
lying distribution of their data if they plan to use
chi-squared or related tests. If one suspects that cell
counts do not arise from a Poisson distribution,
methods given in the following section may help.
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A goodness-of-fit test can be used to determine
whether a distribution is Poisson. However, large

.sample sizes are required for reasonable power

because one is concerned about type II error,
incorrectly concluding that the distribution is
Poisson. A graphical technique, similar to a normal
probability plot, can also help identify non-Poisson
distributions (Hoaglin 1980).

DEALING WITH DEPENDENT
OBSERVATIONS

Simulations using several discrete distributions
established that problems arose when the variance
wasnotequal to the mean. When they were approxi-
mately equal, as they are in the Poisson distribution,
both the chi-squared and G tests performed well. If
the variance was larger than the mean, the tests
rejected the null hypothesis too often; if the vari-
ance was smaller than the mean, the tests rejected
too infrequently.

If the usual contingency table analysisis inappro-
priate, we recommend the use of analysis of vari-
ance (ANOVA) techniques. To use them, one must
satisy ANOVA assumptions and obtain a reliable
estimate of within-cell variation, which can be done
by subsetting the data. For example, if data are
collected over a 4-h time period, a subset could be
created from each 1-h segment, for a total of four
subsets. As a rule of thumb, one might strive to
have as many subsets as possible subject to the con-
straint that the average subset count is five or more.
Analysis of variance assumptions may be more
easily satisfied than those of the chi-squared test. In
particular, independence of counts is not required.
The requirement of independence for ANOVA is
that the subset frequencies in each cell are indepen-
dent, i.e. an observation is not counted in more
than one subset. Another important assumption of
ANOVA is that within-cell variances are homo-
geneous. Since there is often a positive relationship
between means and variances in behavioural
data, we suggest verifying this assumption before
proceeding with parametric ANOVA.

If the sample frequencies do not appear to come
from a normal distribution, the mean count of
several observation periods can become the unit
of analysis. Sample means taken from any distri-
bution converge on a normal distribution (the
central limit theorem). If the parent distribution is
unimodal and not excessively skewed, convergence
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Table IV. The proportion of null hypotheses rejected out of 1000 simulated sample data sets for
P-values of 0-05 from various discrete distributions with known variances

Proportion of rejected null hypotheses

Number of days

Distribution Mean Variance 1 9 81

Discrete normal 19-6 956 0-055 0-051 0-050
Discrete exponential 4.7 91-6 0-007 0-032 0-047
Discrete uniform 7-1 17-8 0-053 0-053 0-046
Linearly increasing 52 54 0-067 0-046 0-042
Linearly increasing 9-8 16:0 0-050 0-063 0-038
Trimodal 55 9-6 0-052 0-053 0-051

Sample data sets were constructed under the null hypothesis of independence from various
discrete distributions in two-by-two contingency tables. A generalized chi-squared statistic was

used to test for independence.

is rapid. For example, the cumulative distribution
function of a transformation of the sum of three
independent uniform variables, each over the inter-
val —1 to +1, differs from that of the standard
normal by less than 1% (Johnson & Kotz 1970). An
upper bound for the magnitude of the difference
between the cumulative distribution functions of a
standardized sum of N independent, identically dis-
tributed random variables and the standard normal
distribution is given by Johnson & Kotz (1970).
Using means, one then has greater confidence
that the assumption of normality, necessary for
ANOVA, has been satisfied. It would be necessary
to first verify that there is little effect of observation
period if, for example, observations are made at the
same time of day for the same length of time each
day.

Another approach if data are not normal is the
use of two-way non-parametric ANOVA (Bradley
1968, page 138; Hettmansperger 1984, page 194).
The non-parametric ANOVA technique, first
presented by Iman (1974), and expanded on by
Conover & Iman (1981), holds great promise. All
observations, here subset frequencies, of the entire
data set are ranked. One then performs a standard
ANOVA on the ranks. If the original variables are
normal, there is little loss of power, i.e. results on
ranks show very high agreement with results from a
standard ANOVA on the original variables. For
variables that are not normal, there may be a
substantial increase in power by performing the
analysis on ranks rather than on the original vari-
ables. This analysis is very easy to implement, since
most statistical packages will rank variables in a

data set and can then be made to perform standard
ANOVA on the ranks. As a cautionary note, sig-
nificant F-values require a somewhat different
interpretation since one is no longer testing differ-
ences of means but of medians. The use of non-
parametric one-way ANOVA is also possible for
testing goodness-of-fit, if the null hypothesis is that
the frequencies are equal. Tests based on rank are
not assumption free. However, their assumptions
are less stringent than those of parametric tests
since they are distribution free.

More complicated alternatives to ANOVA are
available by modifying the traditional chi-squared
test. One is the use of the generalized chi-squared
stétistic, defined as

, (Yi_)‘i)z

=

i

1 0‘2 ’

where k is the number of cells, A; the parameter
representing the mean of cell i, and o2 the
parameter representing the variance of cell i. Simu-
lations using a generalized chi-squared statistic
were performed using various discrete distribution
and based on known variances. Results from these
simulations (Table IV) were encouraging, only the
discrete exponential distribution failed to perform
satisfactorily. If summing over a large number of
observation periods, the generalized chi-squared
statistic performs well since the distribution will be
approximately normal. The problem of using a
generalized chi-squared statistic is that one must
estimate the variance of each cell as well as its mean
from the data. This could be done by subsetting the
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Table V. The proportion of null hypotheses rejected out of 1000 simulated sample data sets for P-values
of 0-05 from various distributions with variances calculated from each sample

Proportion of rejected null hypotheses

Number of days
Distribution Mean Variance 2 4 8 16 32
Discrete uniform 55 11-9 0-317 0-165 0-082 0-069 0-053
0-859 0-542 0-224 0-104 0-079
Linearly increasing 72 9-3 0-329 0-214 0-087 0-068 0-053
0-824 0-574 0-243 0126 0-075
Discrete normal 19-6 95-6 0-424 0-176 0-094 0-089 0-056
0913 0-529 0-211 0-105 0-074
Trimodal 55 9-6 0-318 0-188 0-079 0071 ~ 0-056
0-847 0-581 0-225 0-097 0-075

Sample data sets were constructed under the null hypothesis of independence from various discrete
distributions in two-by-two (first row) and four-by-four (second row) contingency tables. A generalized
chi-squared statistic was used to test for independence. The variances for the generalized chi-squared
statistic were calculated from the data for each cell separately. The number of samples used to calculate
the variance of each cell is the number of days over which data were summed. The variance estimate was
then multiplied by the number of days for use in the generalized chi-squared statistic.

data set, as in ANOVA, or using resampling tech-
niques, such as bootstrapping (Efron & Tibshirani
1986). In general, substantial data are necessary to
reliably estimate the variance of each cell. Fewer
data are needed in ANOVA because of its ad-
ditional assumption of equal variance within all
cells. In theory, the distribution of the generalized
chi-squared statistic under the null hypothesis
converges on the 2 distribution as the number of
subsets approaches infinity. This is supported by
simulations we performed using two-by-two and
four-by-four contingency tables (Table V). In these
simulations, the mean frequency per cell or distri-
bution shape had less influence than the number of
subsets. While the cell variance and mean must be
equal in independent Poisson sampling, this does
not hold for all sampling distributions yielding
correct chi-squared statistics. For example, in con-
tingency tables generated from a multinomial dis-
tribution, the theoretical cell variance is smaller
than its mean. This is due to a restriction on the
entire contingency table. If each cell is examined
separately, however, it should hold a sample from a
Poisson distribution. The mean and variance of a
cell should be approximately equal if calculated
using only that cell’s data.

Adjustments to the chi-squared statistic can be
made if it is known how and where the data depart
from the assumptions of traditional chi-squared

statistics. This may be useful if individuals contrib-
ute more than once to the data set, some individuals
are relatives or mates, or there is some other known
reason for violation of the assumption of indepen-
dence. The simplest adjustment, proposed by
Tideman (1979), requires an estimate of covariance
between observations. He advocates using a gener-
alized chi-squared statistic where the variance, in
the denominator, is calculated by summing average
variances of observations and average covariances
of pairs of observations. In some data sets with
repeated measures, these can be readily estimated
from the data. In data where estimates of variances
and covariances are impractical but the sampling
design clearly identifies which observations are
correlated, several authors have proposed adjust-
ing the chi-squared statistic by dividing it with a
correction factor, for example, Cohen (1976) and
Rao & Scott (1987). More information is necessary
to implement these techniques than will usually be
available to ethologists.

Seaman & Jaeger’s (1990) article on the use of
parametric and non-parametric tests in ecology
contains much relevant information to this discus-
sion. In particular, they emphasize that individuals
are unlikely to be distributed independently in
space. Thus, effects of dependency between obser-
vations in a contingency table pertain to ecological
as well as ethological data.
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CONCLUSION

Our study has demonstrated some of the weak-
nesses of chi-squared and related tests and revealed
possible consequences of their indiscriminate appli-
cation to ethological data. We have shown that
these tests are sensitive to the most common viola-
tion of their assumptions, lack of complete inde-
pendence between observations. One should verify
that the mean and variance are approximately
equal to each other in each cell of a contingency
table before proceeding with chi-squared and
related tests. We recognize that even the best con-
ceived study may yield insufficient data for this.
However, it does no one good to report and discuss
results of invalid statistical tests.
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